1. Memory management

Types of RAM

Conventional, Upper, Extended

Conventional memory is the first 640K of RAM memory. This threshold is a carry over from DOS 1.0 when the operating system was designed to address a maximum of 1024K, with the upper 384K of memory reserved for work by the operating system. This left the first 640K to be utilized by programs written for DOS. With today’s software, you need as much conventional memory as you can possibly set aside.

Upper memory is the 384K after conventional memory, and was originally set aside for system use. It can now have device drivers and TSR programs loaded into it for use.

Extended memory is the portion of RAM that is above the base 1024K. Since DOS cannot directly address this portion of memory, you need to load the HIMEM.SYS and EMM386.SYS device drivers to manage it.

MEM

Displays a quick status report of available RAM memory and memory usage. This is especially useful in determining how much conventional memory is available for your programs after everything has been installed during the boot process.

MSD

MicroSoft Diagnostics (MSD) is a utility available with DOS 6.x that will look at the way your system is configured and offer a report of system usage from memory to devices and IRQs. It is a very thorough report, and should be run with every new system to print the available documentation for system restoration purposes.

MEMMAKER

This is a utility that will diagnose the AUTOEXEC.BAT and CONFIG.SYS files to see that device drivers and TSR programs are being loaded above conventional memory. Wherever it appears that conventional memory can be freed up, the commands in AUTOEXEC.BAT and CONFIG.SYS will automatically be changed to make your system run more memory efficient.

It is a good idea to back up the original AUTOEXEC.BAT and CONFIG.SYS files before running MEMMAKER in case you are not satisfied with the results.

PS/1/Aptiva - Info About the DOS 640KB Memory Addressing Limitation

Memory addressing is one of the most misunderstood concepts to the average personal computer user. Hopefully, with this article and the next, we can explain how memory on a PC is addressed by DOS.

First, we should get some of the terminology straight. The processor in a computer is responsible for all decision making, calculating, and logic that goes on in the computer. Along with many other computer manufacturers, IBM uses processors made by INTEL. Just as the DOS version levels have increased over time, Intel's processors have also gone up in levels. This is reflected in the expansion of the PS/1 line of computers. The smallest unit that an 8088 processor could access was (and is) a byte. This is important to keep in mind when we talk later about DOS and the way it addresses memory. You don't have to be too concerned with bits or bytes, just know that 1 byte is made up of 8 bits. A bit is a single switch that is either ON or OFF (in computing, ON is denoted by 1 and OFF is represented by a 0).

The first IBM personal computer used the INTEL 8088 microprocessor that could address a maximum of 1 megabyte of information. The prefix "mega" means million, thus megabyte means 1 million bytes. However, it is not actually 1 million bytes exactly that the 8088 can access. The actual number is 2 to the 20th power which computes to 1,048,576 bytes. The term "megabyte" is used since there is not a term that means exactly 1,048,576 and it is close enough to 1,000,000. The reason that 2 to the 20th power is the magic number is that the 8088 has 20 different address lines (where a "line" can be thought of as a wire over which an ON or OFF signal can travel), each of which can contain the value of 0 (OFF) or 1 (ON). Therefore the processor has 2 possible values for 20 address lines... this computes to: 2 to the 20th power. An example address is 10000111000110001001. A good analogy for memory addressing is to think of each memory address location in the computer as a mailbox. Each mailbox has a unique address. However, in a computer there are a limited number of addresses and all are made up of some combination of 0's and 1's. The processor is like the postal delivery person and is responsible for taking information from one mailbox to another based on the address.

These different addresses are used to access the different components inside the computer. DOS, which is the common operating system for most IBM personal computers, was designed for the 8088 processor. Because the 8088 processor could only address 1 megabyte, and DOS was designed for the 8088, DOS can only access 1 megabyte. The question now is 1 megabyte of WHAT?

The developers of DOS decided that they would use the first 640,000 address locations for memory or RAM. (Using the mailbox analogy, there would be 640,000 mailboxes available to DOS.) The remaining 384,000 "mailboxes" would be reserved for special adapters (the hard drive and video adapters), thus they would not be available to DOS. The 640,000 address lines is why DOS has this 640,000 byte limit on accessible memory. 640K (K is short for kilo or 1 thousand) may seem like a small amount of memory now that most people talk about having megabytes of memory, but in the early 1980's this was an unimaginable amount. The next chip IBM used was the INTEL 80286. This chip has 24 address lines (wires) which gives 2 to the 24th power of storage. This computes to 16,777,220 and is referred to as 16 megabytes. DOS still has its 640K barrier even though the 80286 can access 16MB

Many people wonder why, if there is a 640K limit on the number of addresses DOS can use, do people add memory to their computers. As time went by, people in the computer industry realized people were going to want more memory for their programs to use. So, they came up with "tricks" to work around the 640K memory address limitation. The problem is that the use of tricks to address memory is not as efficient as using an operating system that does not have the 640K memory barrier designed into it (like DOS does). In other words, it is not as efficient as using an operating system that can recognize more than 1,000,000 addresses (640,000 for memory and 384,000 for hardware adapters) -- one that can recognize 16MB for example. The "tricks" used to allow DOS to use memory above 640K usually involve the installation of special software or drivers such as HIMEM.SYS and EMM386.EXE. Microsoft Windows, later versions of DOS beginning with DOS 5.0, and special memory management software all provide different types of solutions to most memory problems by working around DOS's address limitations.

The 640K memory barrier is the reason a PC user will sometimes get the dreaded "Out of memory error" even though the computer may have 2 megabytes (MB)_installed. Remember, DOS cannot really use the full 2 megabytes, only the first 640K. To make use of the rest of the memory, the computer must use the "tricks" available to work around the 640K limitation and the software that is being used on the computer must be able to understand these "tricks". The next logical question is probably "Why not create a new version of DOS that does not have this problem and that doesn't have to use 'tricks'?" Since DOS really cannot be changed to support more memory and still be DOS, the IBM solution was to create a whole new operating system for PC's. This operating system is called OS/2 and it does have the ability to access more than 1MB of memory.

. Optimising DOS memory

1. Device drivers and TSRs
In order to function, DOS requires a number of "device drivers" to be loaded. These are programs that provide extensions to the operating system for the control of physical devices (eg CD-ROM drivers), or they may be software "devices" (eg memory management programs). They are loaded when the operating system boots, and they need to be listed in the CONFIG.SYS file in the form of "DEVICE" statements. Some installation programs (including those included with both DOS and Windows) add various device drivers to the CONFIG.SYS.

Memory resident programs (also called "terminate and stay resident" programs or TSR's) are similar in function, although they can be loaded at any time by inclusion in a batch file (or simply typing from the command line). Installation programs sometimes add TSR's to the AUTOEXEC.BAT, so that they are automatically loaded when the system boots. All device drivers and TSR's take up some memory, and without optimisation this is usually part of the precious 640 Kb of DOS memory. It is extremely important to avoid loading any device drivers or TSR's that are not needed (as they are frequently inserted into the configuration files by installation programs, it is easy to have a number of unnecessary drivers).

PRIVATE
Remove unnecessary device drivers and memory resident programs.

2. MemMaker
The optimisation of DOS memory should be relatively easy when using MS DOS 6.x, because a memory optimisation utility (MemMaker) is provided. This will analyse the system and alter the configuration files (CONFIG.SYS and AUTOEXEC.BAT) to provide the maximum amount of free DOS memory. EMS is not usually required for multimedia Windows systems, so you should answer accordingly when MemMaker asks if this is required.

PRIVATE
If possible use MS DOS 6.x and MemMaker to optimise DOS memory.

However, it is not always feasible to use MemMaker. Since it scans the system for unused memory quite aggressively, some hardware and software is not compatible with it (eg we have seen ethernet drivers that cause serious problems with MemMaker - at least without using its more advanced options to exclude specific memory addresses from the scan). It may then be necessary to configure the memory manually.

3. Memory managers
MS DOS contains two memory managers that provide access to memory outside of the first megabyte - HIMEM.SYS and EMM386.EXE. HIMEM.SYS is an XMS manager that works with all 286 and higher PC's, and this is required for Windows operation (if it is not already present, it will be installed by the Windows Setup program). EMM386.EXE is a 386 (and higher) specific memory manager. When used in conjunction with HIMEM.SYS, it provides EMS emulation and creates Upper Memory Blocks (UMB's).

EMS is not normally required for Windows, but UMB's are extremely useful. EMM386.EXE exploits the fact that not all of the upper 384K of the first megabyte of memory reserved for the system is actually used. These unused "gaps" in memory may be used to provide UMB's that can be used to load memory resident software such as network software and CD-ROM drivers, which otherwise use a large amount of the 640K DOS memory.

Both HIMEM.SYS and EMM386.EXE are loaded from the CONFIG.SYS, usually in the first two lines as follows:

 DEVICE=C:\DOS\HIMEM.SYS

 DEVICE=C:\DOS\EMM386.EXE

Both of these drivers have been provided with all recent releases of DOS and Windows, and it is advisable to make sure that you are using the most recent version (eg the versions provided with MS DOS 6.0 are more recent than those provided with Windows 3.1, but not as recent as those provided with Windows for Workgroups 3.11 - if in doubt check the date of the file).

PRIVATE
Use the most recent versions of HIMEM.SYS and EMM386.EXE.

4. The NOEMS parameter
EMM386.EXE can be given a number of parameters to control its use of memory (eg to work around some hardware compatibility problems). A detailed discussion of these is beyond the scope of this document, but one which is usually required in a multimedia Windows system is NOEMS. EMM386.EXE provides EMS emulation by default, but the NOEMS parameter disables this and configures it to use XMS. To load the operating system into high memory the line DOS=HIGH should be added to the CONFIG.SYS, and the parameter UMB should also be added to make upper memory blocks available.

Thus the first three lines of the CONFIG.SYS would read:

 DEVICE=C:\DOS\HIMEM.SYS

 DEVICE=C:\DOS\EMM386.EXE NOEMS

 DOS=HIGH, UMB

PRIVATE
Load DOS into high memory.

5. The /Y parameter
There is an undocumented feature of EMM386.EXE (the /Y parameter) that can speed up the loading of Windows by telling it the location of EMM386.EXE. Using this feature, the first three lines of the above CONFIG.SYS would look like this:

 DEVICE=C:\DOS\HIMEM.SYS

 DEVICE=C:\DOS\EMM386.EXE NOEMS /Y=C:\DOS\EMM386.EXE

 DOS=HIGH, UMB

Once upper memory blocks are available, device drivers can be loaded into them by using the DEVICEHIGH command in the CONFIG.SYS. For example, the installation program of the Soundblaster Pro CD driver adds the following line to the CONFIG.SYS to load the CD driver:

 DEVICE=C:\SBPRO\DRV\SBPCD.SYS /D:MSCD001 /P:220

In order to load this into a UMB, the line may be changed to:

 DEVICEHIGH=C:\SBPRO\DRV\SBPCD.SYS /D:MSCD001 /P:220

Similarly, memory resident programs loaded in the AUTOEXEC.BAT (or other batch files) may also be loaded into upper memory by preceding the program name with the command LOADHIGH (which may be abbreviated to LH). Thus the DOS mouse driver may be loaded by the following line in the AUTOEXEC.BAT:

 LH C:\DOS\MOUSE

PRIVATE
Load as many device drivers and memory resident programs as possible into upper memory.

6. Manual optimisation
A program or driver may only be loaded into upper memory if there is a contiguous block of memory available that is large enough to receive it. Thus the order in which programs are loaded can be important (eg loading one large program into upper memory could preclude several smaller ones because collectively the small ones were too large to fit in to the remaining space).

This type of manual optimisation of memory may require some experimentation. The DOS command "MEM" is extremely useful for doing this. Typing "mem" at a DOS prompt provides a simple summary of memory usage - for example:

Memory Type Total = Used + Free

---------------- ------ ------ ------

Conventional 640K 67K 573K

Upper 155K 155K 0K

Adapter RAM/ROM 384K 384K 0K

Extended (XMS) 2917K 2689K 228K

---------------- ------ ------ ------

Total memory 4096K 3295K 801K

Total under 1 MB 795K 222K 573K

Largest executable program size 573K (587088 bytes)

Largest free upper memory block 0K (0 bytes)

MS-DOS is resident in the high memory area.

A more detailed breakdown may be provided by using the classify parameter and typing "mem /c" - eg:

Modules using memory below 1 MB:

 Name Total = Conventional + Upper Memory

 -------- ---------------- ---------------- ----------------

 MSDOS 16525 (16K) 16525 (16K) 0 (0K)

 HIMEM 1168 (1K) 1168 (1K) 0 (0K)

 EMM386 3120 (3K) 3120 (3K) 0 (0K)

 SBPCD 10016 (10K) 10016 (10K) 0 (0K)

 4DOS 4048 (4K) 848 (1K) 3200 (3K)

 WIN 1648 (2K) 1648 (2K) 0 (0K)

 win386 36592 (36K) 2352 (2K) 34240 (33K)

 ANSI 2624 (3K) 2624 (3K) 0 (0K)

 SMARTDRV 27280 (27K) 27280 (27K) 0 (0K)

 4DOS 2448 (2K) 2448 (2K) 0 (0K)

 DBLSPACE 44480 (43K) 0 (0K) 44480 (43K)

 SETVER 832 (1K) 0 (0K) 832 (1K)

 MOUSE 17088 (17K) 0 (0K) 17088 (17K)

 KEYB 6224 (6K) 0 (0K) 6224 (6K)

 MSCDEX 46576 (45K) 0 (0K) 46576 (45K)

 SHARE 6208 (6K) 0 (0K) 6208 (6K)

 Free 587104 (573K) 587104 (573K) 0 (0K)

Memory Summary:

 Type of Memory Total = Used + Free

 ---------------- ----------------- ----------------- -----------------

 Conventional 655360 (640K) 68256 (67K) 587104 (573K)

 Upper 158848 (155K) 158848 (155K) 0 (0K)

 Adapter RAM/ROM 393216 (384K) 393216 (384K) 0 (0K)

 Extended (XMS) 2986880 (2917K) 2753408 (2689K) 233472 (228K)

 ---------------- ----------------- ----------------- -----------------

 Total memory 4194304 (4096K) 3373728 (3295K) 820576 (801K)

 Total under 1 MB 814208 (795K) 227104 (222K) 587104 (573K)

 Largest executable program size 587088 (573K)

 Largest free upper memory block 0 (0K)

 MS-DOS is resident in the high memory area.

The purpose of optimisation is to maximise the total free memory under 1 Mb that is given as the largest executable program size. In the example shown above, 155Kb of DOS memory has been saved by the use of UMB's.

